
Why the Packers struggled offensively

in the second half of last season?

CS 170A Final Project Report

Name: Jerry Liu

ID: 404474229

December 12, 2016

Contents

1 Introduction 1

2 Possible Factors 1

3 The NFL Play-by-Play Dataset 2

4 NFL Savant Play-by-Play Dataset 3

5 Analysis 5

5.1 Principal Component Analysis . 5

5.2 Penalty . 10

5.2.1 Number of Penalties . 10

5.2.2 Penalties Yardage . 10

5.3 Yards Per Play . 13

5.3.1 Hypothesis Test (t Test) . 15

5.3.2 χ2 Test . 17

5.4 Rushing Yards Per Play . 18

5.4.1 Hypothesis Test . 21

5.5 Sack . 22

6 Conclusion 23

1 Introduction

As the most popular sports in the United States, NFL not only requires physicality from players

on the field, but also prefers finely tuned strategies and schemes to put players on the position to

win. In the past, NFL coaches only use their experience and feeling to determine the strategies

and schemes against their opponents. As data analysis step in as an important factor, coaches

can target opponent’s weaknesses and maximize their chances to win. However, data still has not

been seen as the most important measurement of performance and the most important factor to

determine corresponding strategies and schemes. Analysts and scouts still refer to “eye test” to

explain what a phenomenon is.

Since Green Bay Packers’ embarrassing performance against Denver Broncos last year, quarter-

back Aaron Rodgers showed the worst performance since he became the starter for that franchise

in 2008. In this report, we will use data to find out what leads to the Green Bay Packers’ and Aaron

Rodgers’s miserable second half of the 2015 - 2016 season. Since no one has ever done any data

analysis on Aaron Rodgers’ and the Packers’ performance, any method is unprecedented. I would

like to use Principal Component Analysis to determine the factors that affect Packers’ performance

most. I would also like to find relevant attributes that may affect Aaron Rodgers’ passing game.

2 Possible Factors

There are several possible reasons for their struggles. The most popular reason is: the receivers

can’t get open. People have the right to believe in this. Denver Broncos started to use press-man

coverage against Packers receivers, which means the defensive backs put their hands on Packers

receivers to prevent them from gaining separation. According to ESPN [1], the Packers have the

League-wide slowest receiving corps. Also, Eddie Lacy, their primary running back, seemed to have

overweight issues. There are also criticisms of the coaching staff, but we are unable to verify these

claims with data.

1

3 The NFL Play-by-Play Dataset

This is a dataset available on kaggle [2]. This dataset is created by a group of Carnegie Mellon

University statistical researchers, led by Maksim Horowitz [2].

The 46,129-row and 63-columns dataset, shown in Figure 1, contains all regular season plays from

the 2015-2016 NFL season. Each play is broken down into fine details containing players involved,

player positions, play results, penalties, etc. With a great amount of detail, we can use it to analyze

causes for some phenomena.

Figure 1: A screenshot of the CMU NFL Play-by-Play Dataset. This dataset is not numeric

oriented and not very friendly to data analysis.

The data can be processed as follows:

1 [NUM, TXT, RAW] = xlsread('NFLPlaybyPlay2015.xlsx');

2 % Turn the cell into a string matrix

3 RAWStr = string(RAW);

4

5 % Offensive / Defensive Team information is in column 18, 19 respectively

6 Off = RAWStr(:, 18);

7 Def = RAWStr(:, 19);

8 PackersOffIndex = find(Off == 'GB') - 1;

9 PackersDefIndex = find(Def == 'GB') - 1;

10

2

11 Attr = RAWStr(2, :);

12 PackersOffNum = NUM(PackersOffIndex, 2 : 66);

13 PackersDeffNum = NUM(PackersDefIndex, 2 : 66);

Here the NUM matrix contains all numeric data; TXT cell contains all non-numeric data and the

whole dataset is represented in the cell RAW.

4 NFL Savant Play-by-Play Dataset

However, after some arduous digging of the unfriendly kaggle dataset [2], I decided to move on to

the more friendly NFL Savant dataset [3]. This dataset is available on nfl savant [3]. This dataset

consists of 46278-row and 45-columns of data. Most of the values are numeric, and unlike the

kaggle data in Section 3, logical values are expressed in 0 / 1, which is much easier to analyze. The

dataset is shown in Figure 2.

Figure 2: A screenshot of the Play-by-Play 2015 Dataset. This dataset is much more numeric

oriented and more friendly to data analysis.

It consists of not only numeric data, but also textual data (i.e. strings). I first converted the csv

file into an xlsx file, and then used xlsread to get the raw data. The code is shown on the next

page:

3

1 [NUM, TXT, RAW] = xlsread('pbp-2015.xlsx');

2 RAW = string(RAW);

3 TXT = string(TXT);

4

5 % Attributes, ["GameId" "GameDate" "Quarter" "Minute" ...]

6 Attr = RAW(1, :);

7

8 % Get the col numbers that represent teams

9 OffCol = Attr == 'OffenseTeam';

10 DefCol = Attr == 'DefenseTeam';

11 OffIndex = find(RAW(:, OffCol) == 'GB') - 1;

12 DefIndex = find(RAW(:, DefCol) == 'GB') - 1;

13

14 % Filter Data

15 Off = NUM(OffIndex, :);

16 OffRaw = RAW(OffIndex + 1, :);

17 DenverGameIndex = find(OffRaw(:, DefCol) == 'DEN', 1);

18 offLength = length(Off);

19 Def = NUM(DefIndex, :);

20

21 % Get the games, in sequence

22 Games = process game(RAW(OffIndex + 1, DefCol));

The source code of the function process game is below:

1 % The source code of function process game:

2 function Games = process game(GameLog)

3 % Allocate Storage

4 Games = GameLog(1 : 16);

5 prevGame = GameLog(1);

6 j = 2;

7 for i = 2 : length(GameLog)

8 if GameLog(i) ~= prevGame

9 prevGame = GameLog(i);

10 Games(j) = prevGame;

11 j = j + 1;

12 end

13 end

14 end

4

5 Analysis

5.1 Principal Component Analysis

Since there are a lot of attributes for this dataset, we want to use Principal Component Analysis

(PCA) to find out which attribute(s) have a significant impact on the whole data. First select

relevant numeric attributes according to my football knowledge, shown in Table 1.

Attribute Type Meaning

Yards Numeric Yards Per Play.

Down Numeric The down count in the current drive.

ToGo Numeric Yards needed to get a first down / score.

YardLine Numeric The ball’s snap position

(at n yard line) on the field.

IsRush Logical Indicates whether the current play is a rush.

IsPass Logical Indicates whether the current play is a pass.

IsIncomplete Logical Indicates whether the pass is incomplete.

IsTouchdown Logical Indicates whether the current play is a TD.

IsSack Logical Indicates whether the passer is sacked.

IsInterception Logical Indicates whether the passer is intercepted.

IsFumble Logical Indicates whether the offense fumbles the ball.

IsPenalty Logical Indicates whether a penalty flag is on the field.

IsPenaltyAccepted Logical Indicates whether the penalty is accepted.

IsNoPlay Logical Indicates whether the current play

is a no play (offsetting penalty).

Table 1: Table of Projected Attributes and Corresponding Meanings

This forms a 1402 × 14 matrix and we want to use PCA to project it onto a 3D plane. We make

the following distinction:

• If YPP(yards per play) < 5, then we categorize it as low YPP.

• If 5 ≥ YPP < 15, then we categorize it as medium YPP.

• If YPP ≥ 15, then we categorize it as high YPP.

5

Then we use PCA (SVD algorithm) to extract the first three principal components. Figure 3 is a

nice 3D plot from our projection and Figure 4 is an overview of the 3D plot.

Figure 3: The PCA 3D Projection of our offense data

The code for projection is shown below:

1 % Select Relevant Attribute

2 IndexToProj = [20, 8 : 10, 23 : 26, 28, 33 : 35, 41, 43];

3 % Yards, Down, ToGo, YardLine, IsRush, IsPass, IsIncomplete, IsTouchdown, IsSack, ...

IsInterception, IsFumble, IsPenalty, IsPenaltyAccepted, IsNoPlay

4 AttrToProj = Attr(:, IndexToProj);

5 OffToProj = double(OffRaw(:, IndexToProj));

6

7 % Sort the data according to "Yards"

8 [Val, I] = sort(OffToProj, 1, 'ascend');

9 OffToProj = OffToProj(I(:, 1), :);

10

11 % Divide Line between low, medium and high YPP

12 LowYards = find(OffToProj(:, 1) == 5, 1) - 1;

13 GoodYards = find(OffToProj(:, 1) == 15, 1) - 1;

14

6

Figure 4: Overview of the PCA 3D Projection of our offense data

15 % Normalize the data using correlation matrix

16 OffToProjNorm = corr(OffToProj);

17

18 % PCA

19 [U,S,V] = svd(OffToProjNorm);

20 n = size(OffToProj, 1);

21

22 PrincipalComponent1 = U(:,1);

23 PrincipalComponent2 = U(:,2);

24 PrincipalComponent3 = U(:,3);

25 SingularValues = diag(S(1:3,1:3));

26

27 % Projection to 3D

28 X = OffToProj * PrincipalComponent1;

29 Y = OffToProj * PrincipalComponent2;

30 Z = OffToProj * PrincipalComponent3;

31

32 figure

33 hold on

34 plot3(X(1 : LowYards), Y(1 : LowYards), Z(1 : LowYards), 'g+')

7

35 plot3(X(LowYards : GoodYards), Y(LowYards : GoodYards), Z(LowYards : GoodYards), ...

'b+')

36 plot3(X(GoodYards : n), Y(GoodYards : n), Z(GoodYards : n), 'r+')

37 xlabel('1st principal component (scaled)')

38 ylabel('2nd principal component (scaled)')

39 zlabel('3rd principal component (scaled)')

40 title('Offense data projected on first three principal components')

41 legend('low YPP','medium YPP','high YPP')

42 rotate3d on

43 hold off

We can see a rough 3-cluster distribution from the graph, corresponding to low, medium and high

YPP. With the first three Principal Components (PC), we want to find which attributes have sig-

nificant weights in each of the three PC. The limit is quite arbitrary; for example, we can choose

the attributes that exceed the mean of the absolute values of one PC vector. The values for all

three vectors are shown in Table 2.

Vector Index 1st PC 2nd PC 3rd PC

1 −0.051190666 −0.211690262 0.603892049

2 0.143645804 −0.023413132 −0.117699317

3 0.051154443 −0.149140799 0.02702564

4 0.012284638 −0.0742752 0.114178674

5 −0.216100654 0.445428616 0.268642516

6 0.1825421 −0.634452804 0.011132822

7 0.220952173 −0.395082098 −0.302385616

8 0.010351095 −0.104089723 0.29517581

9 −0.000825734 0.17579242 −0.500473668

10 0.024150857 −0.073811184 0.048718148

11 −0.029826596 0.104427344 −0.273225556

12 0.530853587 0.183283386 0.115779429

13 0.536912381 0.21031385 0.102165359

14 0.52294893 0.184219641 0.074117185

Table 2: Table of the First Three PC Vector Values

The above manually chosen significant absolute values are typed in boldface, and their correspond-

8

ing emphasized attributes are shown in Table 3. This table also contains the emphasized values if

we choose the mean of the sum of absolute values in the principal component vector as the criterion.

For the first component, we can see that the first PC emphasizes values relevant to penalties, that

Method of Selection 1st PC 2nd PC 3rd PC

IsPenalty IsRush Yards

Manual IsPenaltyAccepted IsPass IsSack

IsNoPlay IsIncomplete

IsRush IsRush Yards

Mean of Absolute IsPass IsPass IsRush

Values of the IsIncomplete IsIncomplete IsIncomplete

PC Vectors IsPenalty IsTouchdown

IsPenaltyAccepted IsSack

IsNoPlay IsFumble

Table 3: Table of the Emphases of First Three PC Vector Values

the second PC emphasizes values relevant to play type and pass result (data related to passing will

not be discussed in this report since they have already been analyzed by media), and that the third

PC emphasizes yards per play and sack. This gives us some clue on analyzing the play-by-play

data. The code of selecting values above the mean of absolute values of the PC vectors is shown

below.

1 FirstEmpAttr = calc attr(PrincipalComponent1, AttrToProj)

2 SecondEmpAttr = calc attr(PrincipalComponent2, AttrToProj)

3 ThirdEmpAttr = calc attr(PrincipalComponent3, AttrToProj)

4

5 % calc attr function implementation

6 function EmphasizedAttrs = calc attr(PC, Attr)

7 PC = abs(PC);

8 divVal = mean(PC);

9 EmphasizedAttrs = Attr(PC > divVal);

10 end

9

5.2 Penalty

It is natural to take a look into the the emphasized category in the first PC: penalty. We first need

to get the plays with offensive penalties, which is accomplished by the following code:

1 % Filter Data

2 PenaltyIndex = find(OffRaw(:, Attr == 'PenaltyTeam') == 'GB');

3 PenaltyRaw = OffRaw(PenaltyIndex, :);

4 PenaltyYards = double(PenaltyRaw(:, Attr == 'PenaltyYards'));

5

6 % Find out the Denver Game Index

7 DenverGameIndex = find(PenaltyRaw(:, DefCol) == 'DEN', 1);

8 penLength = length(PenaltyYards);

9

10 gameLength = length(Games);

11 preDenLength = find(Games == 'DEN') - 1;

12 postDenLength = gameLength - preDenLength;

5.2.1 Number of Penalties

The number of penalties will definitely set the offense back a lot and it can “change the momentum”.

Then we need to find out whether our data suggests that there is a significant change in the number

of penalties per game, which is accomplished by the code below.

1 PenaltyPreAvg = length(1 : DenverGameIndex - 1) / preDenLength

2 PenaltyPostAvg = length(DenverGameIndex : penLength) / postDenLength

It turns out that the number of offensive penalties per game is very consistent: 5 before the Denver

game and 4.6 after the Denver game.

5.2.2 Penalties Yardage

Since the number of offensive penalties is very consistent, we need to take a look at the penalty

yards, in that a 5-yard penalty is much easier to overcome than a serious penalties. The resulting

plot is shown in Figure 5. The code is shown on the next page.

10

Figure 5: Average Penalty yards per play histograms.

1 % Penalty Yards Pre and Post Denver Game

2 PenaltyYardsPre = PenaltyYards(1 : DenverGameIndex - 1, :);

3 PenaltyYardsPost = PenaltyYards(DenverGameIndex : penLength, :);

4

5 % Average Penalty Yards Per Game

6 numberOfBins = 5;

7 df = numberOfBins - 1;

8 Edges = linspace(-2.5, 17.5, numberOfBins);

9 [prePenCounts, Edges] = histcounts(PenaltyYardsPre, Edges);

10 [postPenCounts, Edges] = histcounts(PenaltyYardsPost, Edges);

11

12 % Get the average

13 prePenCounts = prePenCounts / preDenLength;

14 postPenCounts = postPenCounts / postDenLength;

15

16 figure

17 subplot(2, 1, 1)

18 histogram('BinEdges', Edges, 'BinCounts', prePenCounts)

19 title('Average penalty yards in pre Denver games');

20 subplot(2, 1, 2)

21 histogram('BinEdges', Edges, 'BinCounts', postPenCounts)

22 title('Average penalty yards in post Denver games');

11

From the plot we can see an increase in the number of serious penalties: penalties of 10 and 15

yards. To see the difference better, please take a look at Figure 6. Serious penalties are much harder

to overcome. For example, if on 3rd down and 2, the Packers commit a 5-yard penalty, it will be

3rd down and 8; 8 yards are not hard for Aaron Rodgers and company to overcome. However, if

it is a 10 or even 15 yard penalty, considering how slow Packers’ receivers are last season, one can

easily imagine how those penalties can greatly affect the Packers’ offense.

Figure 6: Difference between penalty yards between post and pre Denver game

The code for the difference is below:

1 % Difference

2 diffX = linspace(0, 15, df);

3 figure

4 plot(diffX, postPenCounts - prePenCounts, 'bo')

5 hold on

6 plot(diffX, zeros(df, 1), 'r--')

7 title('Difference of average penalty yards between pre and post Denver games');

8 axis([-5, 20, -1.4, 0.6]);

12

5.3 Yards Per Play

As the dominant value in the third PC, we have to look into the value: yards per play. First, we

want to take a look at histograms of yards per play in a game. We split the data into two parts:

pre-Denver games and post-Denver games. Since there are a lot more games after the Denver game,

we need to use the average of yards per play.

1 OffYards = Off(:, Attr == 'Yards');

2 gameLength = length(Games);

3 preDenLength = find(Games == 'DEN') - 1;

4 postDenLength = gameLength - preDenLength;

5 OffPre = OffYards(1 : DenverGameIndex - 1, :);

6 OffPost = OffYards(DenverGameIndex : offLength, :);

7 Edges = linspace(-12, 66, 27);

8

9 % Use histcount function to process counts

10 [preCounts, Edges] = histcounts(OffPre, Edges);

11 [postCounts, Edges] = histcounts(OffPost, Edges);

12

13 % Get the average

14 preCountsAvg = preCounts / preDenLength;

15 postCountsAvg = postCounts / postDenLength;

From the above code, we get two histograms of yards per play in pre Denver games and post Denver

games, shown in Figure 7. From the plot we can see that there are more negative plays, and more

plays with little gain.

To confirm our feeling, we plotted the difference between the post and pre Denver games in Figure

8: postCounts - preCounts. From Figure 8, we can see that there is a sharp increase in plays

with small gains and significant increase in negative plays. There are also noticeable decreases for

plays beyond 10 yards.

We see that the offense is not as productive after the Denver game than before the Denver game.

1 % Difference

2 start = mean(Edges(1 : 2));

3 ending = mean(Edges(26 : 27));

4 diffX = linspace(start, ending, 26);

13

Figure 7: Average yards per play histograms.

Figure 8: Difference between yards per play between post and pre Denver game

5 plot(diffX, postCounts - preCounts, 'bo')

6 hold on

7 plot(diffX, zeros(26, 1), 'r--')

8 title('Difference of average yards per play between pre and post Denver games');

14

5.3.1 Hypothesis Test (t Test)

To see if there is enough evidence for worse yards per play in post Denver games, we want to setup

a hypothesis test with significance level α = 0.05. Let subscript 1 denote yards per play in pre

Denver games and let subscript 2 denote yards per play in post Denver games.

H0 : µpre = µpost

Ha : µpre > µpost

t =
x1 − x2 − 0√
s21/n1 + s22/n2

p-value = P(t > tdf,α), df = min(n1, n2) − 1, α = 0.05

And the result is that we reject the null hypothesis, which means we have enough evidence that the

offense before the Denver game is better than that after the Denver game. This is not surprising

as we see Aaron Rodgers and company struggle on offense. Receivers are pressed at the line of

scrimmage and they cannot gain separation from average-best corners, making Rodgers scramble

for himself or dumping a short check-pass a running back. The data are consistent with our eye-

test, but are there any other possible cause for the debacle of their offense? Can we find, if any,

from the dataset?

Since we know and see that their passing game struggled, we would like to know what else con-

tributed to the avalanche of their offense. First we want to see whether the running game has

affected the outcome. There is no significant difference between the average rushing attempts per

game, as the value before the Denver game is 28.3333 and that after the Denver game is 26.4000.

A 2-attempt difference is completely unnoticeable in a game. Thus, we want to see whether the

efficiency of rushing has declined. The average rushing yards per attempt is 4.7471 before the

Denver game and 4.2197 after the Denver game. The average rushing yards per attempt dropped

for about 0.53 yards, which is 11%.

15

The code for the hypothesis test is shown below:

1 % Hypothesis Test

2 [mu1, s1, n1] = calc t attr(OffPre);

3 [mu2, s2, n2] = calc t attr(OffPost);

4 df = min(n1, n2) - 1;

5

6 tValProb = cdf('T', (mu1 - mu2) / sqrt(s1ˆ2 / n1 + s2ˆ2 / n2), df, 'upper');

7 Significance = 0.05;

8

9 if tValProb < Significance

10 fprintf('Reject Null Hypothesis.\n');

11 else

12 fprintf('Do not reject Null Hypothesis.\n');

13 end

The calc t attr function implementation is shown below:

1 function [mu, s, n] = calc t attr(X)

2 mu = mean(X); s = std(X); n = length(X);

3 end

16

5.3.2 χ2 Test

I originally planned to only use χ2 Test, but in some bins the number of occurrences is 0. If we

simply plug these ill-formatted histogram counts into the cdf function, it will only return NaN. Also,

since we are comparing the means, t test (another form of hypothesis test) seems more natural.

However, we can reduce the number of bins to avoid 0s in the histogram counts. Note: reducing

the number of bins can lead to a poorly represented data. For yardages where a 5-yard play differs

from a 10-yard play significantly, I do think it is better to use Hypothesis Test. The code is below:

1 % Chi-Square Test

2 numberOfBins = 5;

3 df = numberOfBins - 1;

4 Edges = linspace(-20, 80, numberOfBins);

5

6 % Use histcount function to process counts

7 [postCounts, Edges] = histcounts(OffPost, Edges);

8 [seasonCounts, Edges] = histcounts(OffYards, Edges);

9

10 % Get the average

11 postCounts = postCounts / preDenLength;

12 seasonCounts = seasonCounts / gameLength;

13

14 ChiSquareStatistic = sum((postCounts - seasonCounts) .ˆ 2 ./ seasonCounts)

15 ChiSquareProbability = cdf('Chisquare', ChiSquareStatistic, df)

The resulting χ2 statistic is really large: ≈ 46.5266, and the corresponding χ2 probability is ≈ 1,

which means this situation is almost impossible. Thus, the χ2 Test agrees with our Hypothesis

Test result: the offense performed worse in post-Denver games.

17

5.4 Rushing Yards Per Play

Like what we did in Section 5.3, we use histograms to find out what happened to the ground game.

The following code plots histograms of average rushing yards per play from both pre and post

Denver games, shown in Figure 9. From the graph, we actually see that there are more small yards

Figure 9: Average rushing yards per play histograms.

and less good gains before the Denver games. The average value before the Denver game might

very well be boosted by some large yardage runs at the right hand side of the histogram. The plot

of the difference in Figure 10. The code is shown below.

1 % Filter Rushing Data

2 OffYards = Off(:, Attr == 'Yards');

3 RushIndex = double(OffRaw(:, Attr == 'IsRush')) == 1;

4 RushRaw = OffRaw(RushIndex, :);

18

Figure 10: Difference between rushing yards per play between post, pre Denver game

5 RushLength = length(RushRaw);

6 RushYards = OffYards(RushIndex, :);

7 DenverGameIndex = find(RushRaw(:, DefCol) == 'DEN', 1);

8

9 % Find the first Denver game index

10 gameLength = length(Games);

11 preDenLength = find(Games == 'DEN') - 1;

12 postDenLength = gameLength - preDenLength;

13

14 % Divide Data into two parts

15 RushPre = RushYards(1 : DenverGameIndex - 1, :);

16 RushPost = RushYards(DenverGameIndex : RushLength, :);

17

18 Edges = linspace(-10, 65, 25);

19

19

20 % Use histcount function to process counts

21 [preCounts, Edges] = histcounts(RushPre, Edges);

22 [postCounts, Edges] = histcounts(RushPost, Edges);

23

24

25 % Get Average

26 preCountsAvg = preCounts / preDenLength;

27 postCountsAvg = postCounts / postDenLength;

28

29 figure

30 subplot(2, 1, 1)

31 histogram('BinEdges', Edges, 'BinCounts', preCountsAvg)

32 title('Average rushing yards per play in pre Denver games');

33 subplot(2, 1, 2)

34 histogram('BinEdges', Edges, 'BinCounts', postCountsAvg)

35 title('Average rushing yards per play in post Denver games');

36

37 % Difference

38 start = mean(Edges(1 : 2));

39 ending = mean(Edges(24 : 25));

40 diffX = linspace(start, ending, 24);

41 figure

42 plot(diffX, postCountsAvg - preCountsAvg, 'bo')

43 hold on

44 plot(diffX, zeros(24, 1), 'r--')

45 title('Difference of average rushing yards per play between pre, post Denver games');

20

5.4.1 Hypothesis Test (t Test)

To see if there is enough evidence for worse rushing attacks in post Denver games, we want to setup

a hypothesis test with significance level α = 0.05. Let subscript 1 denote rush yards in pre Denver

games and let subscript 2 denote rush yards in post Denver games.

H0 : µpre = µpost

Ha : µpre > µpost

t =
x1 − x2 − 0√
s21/n1 + s22/n2

p-value = P(t > tdf,α), df = min(n1, n2) − 1, α = 0.05

Thus we use the following code to do the test:

1 % Hypothesis Test

2 [mu1, s1, n1] = calc t attr(RushPre);

3 [mu2, s2, n2] = calc t attr(RushPost);

4 df = min(n1, n2) - 1;

5

6 tValProb = cdf('T', (mu1 - mu2) / sqrt(s1ˆ2 / n1 + s2ˆ2 / n2), df, 'upper');

7 Significance = 0.05;

8

9 if tValProb < Significance

10 fprintf('Reject Null Hypothesis.\n');

11 else

12 fprintf('Do not reject Null Hypothesis.\n');

13 end

And the result is that we do not reject the null hypothesis, which means we do not have enough

evidence to show that the ground game before the Denver game is better than that after the Denver

game. Thus we can put much less faith on that “improving the ground game will boost the offense”.

21

5.5 Sack

Here we will look into another dominant value in the third PC: Sack. Sack is somewhat represented

in negative plays, but in critical game situations, a sack can be a game changer. Like what we did

in Section 5.2, we filter the data first and calculate the number of sacks per game.

1 % Filter out sack data

2 SackIndex = find(OffRaw(:, Attr == 'IsSack') == '1');

3 SackRaw = OffRaw(SackIndex, :);

4 SackYards = OffYards(SackIndex);

5 DenverGameIndex = find(SackRaw(:, DefCol) == 'DEN', 1);

6 sackLength = length(SackYards);

7

8 gameLength = length(Games);

9 preDenLength = find(Games == 'DEN') - 1;

10 postDenLength = gameLength - preDenLength;

11

12 % The mean of the number of sacks in a game

13 SackPreAvg = length(2 : DenverGameIndex) / preDenLength

14 SackPostAvg = length(DenverGameIndex : sackLength) / postDenLength

We see that before the Denver game, the average number of sacks is only 2.1667, while after the

Denver game, this number bumps ≈ 75.38% to 3.8. An increase in sacks can indicate the following:

• Lack of ground game caused too many passing attempts, which naturally generated more

sacks. This is already declined in Section 5.4.1.

• Lack of protection from offensive line. The Packers’ offensive line was plagued by injuries in

the second half of the season, with which the data are consistent.

• Aaron Rodgers held the ball too long. The protection will always break down as time-after-

snap increases, which will result in more sacks. NFL Analysts have already found the cause:

receives can’t get open.

Since there is nothing novel coming out of the sack data, I will not do more data analysis on this

part.

22

6 Conclusion

Because of my familiarity with American football and NFL, I decided to analyze NFL play-by-play

data. In my humble opinion, except ProFootballFocus, no other media really pay attention to data

mining, and analysts either only refer to simple statistics or rely solely on their “eye-test”. For

example, for Green Bay Packers’ struggle in the second half of last season, I heard the following

rhetoric for quite a while:

1. “Aaron Rodgers is not the same.”

2. “There is no running game.”

3. “There is no protection from the offensive line.”

4. “The receivers can’t get open.”

For 1. and 2., often analysts do not refer to statistics at all. They use their eye-test to say what

they feel, which is not very reliable.

In my analysis, for example, I found that there is no sufficient evidence that the ground game

was worse in the second half of last season. NFL Analysts also did not notice an increase in seri-

ous penalties in the second half of the season, as shown in Section section::penalty, which created

difficult tasks for the Packers’ offense.

In this project, converting csv files / cells into string matrices costs me some time. I looked

through several MATLAB documents to properly import the play-by-play data [3] into MATLAB.

After my Principal Component Analysis, I spent quite some time getting histograms work. Since

I need to use the average of yards per play (YPP), or YPP per game, I need to modify the counts

in the histogram counts. In this course, we only saw hist, and I could not find a way to manip-

ulate this function to get the average of counts. I looked several documents and decided to use

a combination of histcounts and histogram. Then I used χ2 Test and Hypothesis Test (mainly

the latter) to confirm my intuitions and found out that one of them is false. The hardest part

of this project will be converting cells / char vectors into string matrices, and then manipulating

and extracting data from the raw data string matrix. For the report, the hardest part is to find a

proper arrangement so that the graphs and relevant paragraphs are not very far apart.

23

In conclusion, I found out that

• The ground game was not worse in the second half of the season.

• Packers’ had noticeably more “serious” penalties, penalties with 10 or 15 yards.

• The number of sacks go up quite a bit, consistent with Analysts’ “eye-test”.

Although the dataset used in this project is already very large, it also lacks some attributes required

by more advanced analyses. For example, if the receivers really cannot get open in press coverage,

can we confirm that from the data; e.g. is the yards per play / completion percentage significantly

down from non-press coverages? If I have this kinds of data, I would assign numeric labels to

replace their string representations and use correlation matrix to do PCA again to confirm whether

they play a huge role in offense.

References

[1] Demovsky, R. Passing problem: Aaron rodgers, packers have nfl’s slowest weapons. http:

//www.espn.com/, November 2015.

[2] Horowitz, M. Detailed nfl play-by-play data 2015. https://www.kaggle.com, October 2016.

[3] NFL-Savant. Nfl play-by-play data 2015. http://nflsavant.com/about.php, 2016.

24

http://www.espn.com/
http://www.espn.com/
https://www.kaggle.com
http://nflsavant.com/about.php

	Introduction
	Possible Factors
	The NFL Play-by-Play Dataset
	NFL Savant Play-by-Play Dataset
	Analysis
	Principal Component Analysis
	Penalty
	Number of Penalties
	Penalties Yardage

	Yards Per Play
	Hypothesis Test (t Test)
	2 Test

	Rushing Yards Per Play
	Hypothesis Test

	Sack

	Conclusion

